Isolation and Characterization of Streptococcus cremoris Wg2-Specific Promoters

JOSEPH M. B. M. VAN DER VOSSEN, DANIEL VAN DER LELIE, AND GERARD VENEMA*

Department of Genetics, University of Groningen, 9751 NN Haren, The Netherlands

Received 30 March 1987/Accepted 21 July 1987

By cloning MboI fragments in the promoter selection vector pGKV210, which replicates in Streptococcus lactis, Bacillus subtilis, and Escherichia coli and carries a promoterless chloramphenicol acetyltransferase gene, we obtained a number of fragments endowed with promoter activity, partly by direct selection in B. subtilis. Five fragments were sequenced, and the promoters were mapped with S1 nuclease. The promoters agreed with the E. coli promoter consensus and the B. subtilis vegetative σ43 promoter consensus. The promoters were preceded by an A+T-rich region (ranging from 64 to 78% A+T). S1 nuclease mapping data showed that the transcriptional start point in three of the fragments was at a TAG sequence 5 to 9 nucleotides downstream from the promoter. Three fragments carried an open reading frame preceded by a ribosome-binding site which can be recognized by E. coli, B. subtilis, and S. lactis ribosomes.

The group N streptococci are important microorganisms in the dairy fermentation industry. To construct dairy starter cultures with improved properties, understanding of gene expression in lactic streptococci is essential. In addition the construction of efficient expression vectors in lactic acid streptococci depends critically on the availability of well characterized expression signals of this group of organisms.

In a previous paper (30) we reported on the construction of the promoter selection vector pGKV210, which replicates in Streptococcus lactis, Bacillus subtilis, and Escherichia coli. This vector, containing a promoterless chloramphenicol acetyltransferase (CAT) gene (cat-86), proved to be useful for isolating fragments with promoter activity. However, because of the low transformation frequency of S. lactis protoplasts, fragments with promoter activity could be obtained only via precleaning in B. subtilis. Recently we were able to increase the transformation efficiency of S. lactis protoplasts by a factor of approximately 1,600 (manuscript in preparation), which enabled us to select Streptococcus cremoris-specific promoters in S. lactis in a direct way. In this paper we report on the characterization of a number of S. cremoris-specific promoters of various strengths which were isolated partly via precleaning in B. subtilis and partly by direct cloning in S. lactis with pGKV210.

MATERIALS AND METHODS

Bacterial strains, plasmids, and bacteriophages. S. lactis IL1403 (5) and B. subtilis PSL1 (21) were used as recipients in the promoter-cloning experiments with pGKV210 (30). S. cremoris Wg2 (22) was the donor of the promoter-containing DNA fragments. Fusions with the promoter-containing fragments with lacZ were made in pMBL1043 (27) in E. coli MC1000 (2). pGKV210 and derivatives were routinely isolated from E. coli BH2600, because the copy number of these plasmids is approximately 15 times higher in E. coli than in both S. lactis and B. subtilis (12).

For sequence analysis the promoter-containing fragments were cloned in E. coli JM109 (34) with bacteriophages M13mp18 and M13mp19 (34) as vectors.

* Corresponding author.

Media. TY broth (24) was used for culturing E. coli and B. subtilis. For plating, the TY broth was solidified with 1.5% agar. S. lactis and S. cremoris were cultured and plated on glucose-M17 broth and agar (28) (Difco Laboratories, East Molesey, United Kingdom). Chloramphenicol was added at final concentrations of 5 to 100 μg/ml for B. subtilis, 4 to 30 μg/ml for S. lactis, and 10 to 300 μg/ml for E. coli. Erythromycin was used at 5 μg/ml for B. subtilis and S. lactis and at 100 μg/ml for E. coli. E. coli MC1000 transformants were plated on TY agar with 50 μg of ampicillin per ml and 40 μg of 5-bromo-4-chloro-3-indolyl-β-D-galactosidase (X-Gal) per ml.

Isolation of plasmid DNA. Plasmid DNA was isolated from E. coli by the method of Ish-Horowicz and Burke (10). The same method with minor modifications (12) was used to isolate plasmid DNA from B. subtilis. To isolate plasmid DNA from S. lactis, the method of Gasson (6) was used.

Isolation of total DNA. High-molecular-weight DNA of S. cremoris Wg2 was isolated from a 10-fold-diluted overnight culture grown for 2 h at 30°C in 100 ml of glucose-M17 medium. Cells were harvested by centrifugation for 10 min at 6,000 x g, suspended in 10 ml of 1× SSC (0.15 M sodium chloride plus 15 mM trisodium citrate) containing 5 mg of lysozyme per ml, 100 μg of mutanolysin (Sigma Chemical Co.) per ml, and 100 μg of RNase per ml, incubated for 20 min at 37°C, and lysed by addition of sodium dodecyl sulfate (end concentration, 0.5%) and incubation for 10 min at 65°C. After addition of proteinase K (200 μg/ml), incubation was continued for 60 min at 50°C. The lysate was extracted twice with an equal volume of phenol. The aqueous phase was continued for 60 min at 50°C. The lysate was extracted twice with an equal volume of phenol. The aqueous phase was treated with ethyl alcohol. The aqueous phase was treated with ethyl alcohol. The aqueous phase was precipitated with isopropanol, and the DNA was dissolved in 100 μl of Tris-EDTA buffer (20) and centrifuged for 10 min at 16,000 x g.

Restriction enzyme analysis and molecular cloning. Restriction enzymes and T4 DNA ligase were purchased from Boehringer GmbH, Mannheim, Federal Republic of Germany, and used as recommended by the supplier. DNA digests were separated by agarose gel (0.5 to 2.0%) electrophoresis.

Protoplasts of B. subtilis PSL-1 were transformed as described by Chang and Cohen (4). S. lactis IL1403 protoplasts were transformed as described by Kondo and McKay (13), except that protoplasts and DNA were incubated in 0.5% glucose-M17 broth and agar (28) (Difco Laboratories, East Molesey, United Kingdom). Chloramphenicol was added at final concentrations of 5 to 100 μg/ml for B. subtilis, 4 to 30 μg/ml for S. lactis, and 10 to 300 μg/ml for E. coli. Erythromycin was used at 5 μg/ml for B. subtilis and S. lactis and at 100 μg/ml for E. coli. E. coli MC1000 transformants were plated on TY agar with 50 μg of ampicillin per ml and 40 μg of 5-bromo-4-chloro-3-indolyl-β-D-galactosidase (X-Gal) per ml.
22.5% polyethylene glycol for 20 min at room temperature in the presence of liposomes, consisting of cardiolipin and phosphatidylcholine in a molar ratio of 1 to 6. The end concentration of liposomes was 50 μg of lipids per ml. *S. lactis* IL1403 protoplasts were prepared by the method of Okamoto et al. (20), with some modifications (30).

Competent cells of *E. coli* were transformed by the method of Mandel and Higa (15).

DNA sequence determination. Promoter-containing fragments were cloned in M13mp18 and M13mp19 (34) and sequenced by the dideoxynucleotide method of Sanger et al. (25). 17-mer oligonucleotides for internal priming on the promoter fragments were synthesized on the bases of the nucleotide sequence determined by priming DNA synthesis with the universal 17-mer M13 primer.

Isolation of RNA. RNA was isolated from *S. lactis* carrying promoter-containing fragments in pGKV210 and from *S. cremoris* Wg2. The cells were cultured in 200 ml glucose-M17 medium containing 5 μg of erythromycin per ml and 4 μg of chloramphenicol per ml, except for *S. cremoris* cells, which were cultured in the absence of antibiotics. At an A660 of approximately 0.4 the cells were harvested by centrifugation (6,000 × g for 10 min) and suspended in 100 ml of glucose-M17 medium containing 25% sucrose, 40 mM ammonium acetate, 1 mM magnesium acetate, and 10 mg of lysoyzme per ml. After 30 min of incubation at 37°C, the protoplasts were pelleted by centrifugation (6,000 × g for 10 min) and suspended in 10 ml of hot (65°C) lysis buffer consisting of 0.2 M sodium acetate (pH 5.0), 1% sodium dodecyl sulfate, and 10 mM EDTA (35). After 10 min, 10 ml of phenol at 65°C was added, and the solution was mixed and cooled to room temperature. Subsequently, chloroform-isoamyl alcohol (24:1, vol/vol) was added and mixed for 10 min (300 rpm). After centrifugation (20,000 × g for 10 min), the upper phase was extracted once more with an equal volume of chloroform-isoamyl alcohol (24:1, vol/vol). RNA was precipitated with LiCl (2 M) by the method of Zantinge et al. (36). The RNA was pelleted by centrifugation at 20,000 × g for 30 min at 4°C, washed once with 2 M LiCl and twice with cold 80% ethanol, dried under vacuum, and dissolved in 100 μl of distilled water.

End labeling of fragments. Promoter-containing fragments were cut from the promoter selection vector pGKV210 with EcoRI and SalI and collected on a DEAE membrane (Schleicher and Schuell, Dassel, Federal Republic of Germany) after gel electrophoresis, as specified by the supplier. The 5' ends of the promoter-containing DNA fragments were labeled after treatment with calf intestinal phosphatase by using [γ-32P]ATP and T4 polynucleotide kinase as described by Maniatis et al. (16).

Sl nuclease mapping assay. RNA (20 μg) was mixed with approximately 150 ng of 32P-5'-end-labeled DNA in a volume of 10 μl containing 80% formamide, 40 mM 4(2-hydroxy- methyl)-1-piperazineethanesulfonic acid (pH 6.4), 0.4 M NaCl, and 1 mM EDTA, as described by Casey and Davidson (3). The mixture was incubated for 5 min at 90°C and subsequently transferred to 48.5°C and incubated for 3 h. The hybridization mixtures were diluted with 200 μl of cold Sl digestion buffer, consisting of 30 mM sodium acetate (pH 4.6), 0.25 M sodium chloride, 1 mM zinc sulfate, 5% glyc erol, 200 U of Sl nuclease (Boehringer), and 20 U of RNasin (Boehringer). Sl digestions were done at 37°C for 30 min. Sl-resistant hybrids were precipitated with ethanol and analyzed by electrophoresis in 6% polyacrylamide gels containing 7 M urea followed by autoradiography.

β-Galactosidase assays. *E. coli* cells containing lacZ fusions were grown in TY broth. Portions of culture (0.1 ml) were diluted in 0.9 ml of Z buffer (18) at an optical density at 600 nm of 0.4 and disrupted with 2 drops of chloroform and 1 drop of 0.1% SDS. Samples were assayed for β-galactosidase activity by the method of Miller (18).

RESULTS

Promoter screening with pGKV210. Figure 1 shows the promoter selection vector pGKV210, in which the promoterless *cat*-86 gene is preceded by a multiple cloning site. *MboI* fragments, obtained from *S. cremoris* Wg2 chromosomal DNA, were ligated in the BamHI site of the multiple cloning site, and the ligation mixture was transformed to *S. lactis* IL1403 and *B. subtilis* PSL1 protoplasts. In *S. lactis*, the mixture yielded 34 Cmr transformants per μg of DNA on glucose-SM17 plates containing 5 μg of erythromycin per ml and 4 μg of chloramphenicol per ml; in *B. subtilis* approximately 300 Cmr' transformants per μg of DNA were obtained on DM3 plates containing 5 μg of erythromycin per ml and 20 μg of chloramphenicol per ml. All fragments which promoted the expression of the *cat*-86 gene in *S. lactis* also promoted its expression in *B. subtilis*, but only 70% of the fragments obtained in *B. subtilis* were able to render *S. lactis* Cmr'.

Five randomly selected promoter-containing fragments in pGKV210, active in both *S. lactis* and *B. subtilis*, were further analyzed. Table 1 lists the Cmr' and CAT activities under the control of the different promoters in pGKV221, pGKV223, pGKV232, pGKV244, and pGKV259 in *S. lactis* and *B. subtilis*. In *E. coli* only the level of resistance to chloramphenicol was determined.

Promoter activity giving rise to relatively high levels of Cmr' or CAT activity in one host also gave a relatively high level of resistance and CAT activity in the other host (Table 1). However, resistances and CAT activities observed in *B. subtilis* were considerably higher than those observed in *S. lactis*. The highest Cmr' levels were observed in *E. coli*, but the selection vector pGKV210 also rendered *E. coli* Cmr'.

Nucleotide sequence of promoter-containing fragments. The five different promoter-containing fragments (P21, P23, P32, P33, P34) were cloned in M13mp18 and M13mp19 (34) and sequenced by the dideoxynucleotide method of Sanger et al. (25). 17-mer oligonucleotides for internal priming on the promoter fragments were synthesized on the bases of the nucleotide sequence determined by priming DNA synthesis with the universal 17-mer M13 primer.

RESULTS

Promoter screening with pGKV210. Figure 1 shows the promoter selection vector pGKV210, in which the promoterless *cat*-86 gene is preceded by a multiple cloning site. *MboI* fragments, obtained from *S. cremoris* Wg2 chromosomal DNA, were ligated in the BamHI site of the multiple cloning site, and the ligation mixture was transformed to *S. lactis* IL1403 and *B. subtilis* PSL1 protoplasts. In *S. lactis*, the mixture yielded 34 Cmr transformants per μg of DNA on glucose-SM17 plates containing 5 μg of erythromycin per ml and 4 μg of chloramphenicol per ml; in *B. subtilis* approximately 300 Cmr' transformants per μg of DNA were obtained on DM3 plates containing 5 μg of erythromycin per ml and 20 μg of chloramphenicol per ml. All fragments which promoted the expression of the *cat*-86 gene in *S. lactis* also promoted its expression in *B. subtilis*, but only 70% of the fragments obtained in *B. subtilis* were able to render *S. lactis* Cmr'.

Five randomly selected promoter-containing fragments in pGKV210, active in both *S. lactis* and *B. subtilis*, were further analyzed. Table 1 lists the Cmr' and CAT activities under the control of the different promoters in pGKV221, pGKV223, pGKV232, pGKV244, and pGKV259 in *S. lactis* and *B. subtilis*. In *E. coli* only the level of resistance to chloramphenicol was determined.

Promoter activity giving rise to relatively high levels of Cmr' or CAT activity in one host also gave a relatively high level of resistance and CAT activity in the other host (Table 1). However, resistances and CAT activities observed in *B. subtilis* were considerably higher than those observed in *S. lactis*. The highest Cmr' levels were observed in *E. coli*, but the selection vector pGKV210 also rendered *E. coli* Cmr'.

Nucleotide sequence of promoter-containing fragments. The five different promoter-containing fragments (P21, P23, P32, P33, P34) were cloned in M13mp18 and M13mp19 (34) and sequenced by the dideoxynucleotide method of Sanger et al. (25). 17-mer oligonucleotides for internal priming on the promoter fragments were synthesized on the bases of the nucleotide sequence determined by priming DNA synthesis with the universal 17-mer M13 primer.
TABLE 1. Promoter activity of *S. cremoris* DNA fragments in pGKV210

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Insert</th>
<th>Size (bp)</th>
<th>B. subtilis</th>
<th>S. lactis</th>
<th>E. coli Cm<sup>+</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cm<sup>+</sup></td>
<td>CAT activity</td>
<td>Cm<sup>+</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(µg/ml)</td>
<td>(U/mg of protein)</td>
<td>(µg/ml)</td>
</tr>
<tr>
<td>pGKV210</td>
<td></td>
<td></td>
<td><5</td>
<td>0.1</td>
<td><4</td>
</tr>
<tr>
<td>pGKV221</td>
<td>P21</td>
<td>610</td>
<td>40</td>
<td>22</td>
<td>8</td>
</tr>
<tr>
<td>pGKV223</td>
<td>P23</td>
<td>680</td>
<td>60</td>
<td>26</td>
<td>20</td>
</tr>
<tr>
<td>pGKV232</td>
<td>P32</td>
<td>648</td>
<td>40</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>pGKV244</td>
<td>P44</td>
<td>874</td>
<td>40</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>pGKV259</td>
<td>P59</td>
<td>551</td>
<td>60</td>
<td>30</td>
<td>24</td>
</tr>
</tbody>
</table>

* CAT activity was assayed by the colorimetric method (26) in cell extracts of cells grown in TY broth (*B. subtilis*) or in glucose-M17 medium (*S. lactis*) containing 5 µg of erythromycin per ml. Chloramphenicol was added to a final concentration of 5 µg/ml (*B. subtilis*) or 4 µg/ml (*S. lactis*) 1 h before the cells were harvested. The cells were harvested from an exponentially growing culture in TY broth at an A₆₀₀ of approximately 0.6. The maximal concentration still allowing growth was determined by plating suitably diluted overnight cultures on TY plates (*B. subtilis*) or glucose-M17 medium plates (*S. lactis*) containing 5 µg of erythromycin per ml and increasing amounts of chloramphenicol. The maximal concentrations still allowing growth of *E. coli* were determined on TY plates containing 50 µg of erythromycin per ml and increasing amounts of chloramphenicol.

P44, and P59; Table 1) were cut from the recombinant plasmids with *EcoRI* and *SalI* (the sites for these enzymes surround the BamHI site in the multiple cloning site of pGKV210 [Fig. 1]) and inserted into the replicative form of M13mp18 and M13mp19 after digestion with *EcoRI* and *SalI*. To ascertain that no sequence alterations had taken place during the different manipulations which might affect the promoter activity, the fragments were isolated from the replicative form of the M13 clones and reinserted into pGKV210. No change in Cm⁺ in *B. subtilis* was observed after reclone.

Relevant parts of the nucleotide sequences, determined from the S1 nuclease mapping experiments (see below) and analysis of the sequence data of the five promoter-containing fragments, are shown in Fig. 2.

The sequences shown contain putative promoters, whose —10 and —35 regions (indicated by overbars in Fig. 2) are spaced by 17 to 18 nucleotides and agree with the consensus promoter sequence of *E. coli* (8, 23) and *B. subtilis* vegetative promoters (19), which are presumed to be recognized by σ32 RNA polymerase (formerly denoted σ55 RNA polymerase [7]). Only three of the promoter fragments (P23, P32, and P44) contained an open reading frame (ORF), and all three started with ATG as the translation initiation codon. In all three fragments the translation initiation codon was preceded by a potential Shine-Dalgarno (SD) sequence, capable of base pairing with the 3′ end of the 16S rRNA of —16.0, —14.4, and —16.2 kcal/mol in Fig. 2 and have a free energy of binding (ΔG) with the 3′ end of the *S. lactis* 16S rRNA expected, in this case the protected fragments were 12 nucleotides shorter because the RNA synthesized by *S. cremoris* was unable to protect the DNA between the MboI and the SalI sites, which is a part of the multiple cloning site (results not shown).

Expression of β-galactosidase in fusions with the lacZ gene. To determine whether the putative ribosome-binding sites existed in vivo, in frame fusions between the ORFs of the *MboI* fragments P32 and P44 were made in pMLB1034 (27), with the *E. coli lacZ* gene deprived of its first 8 codons, SD sequence, and promoter. For this, pMLB1034 was cleaved with *SalI* and blunt-end ligated with pGKV232 digested with *MboI* after the sticky ends had been filled in with the Klenow fragment of DNA polymerase I. Plasmid pGKV244 was digested with *MboI*, and the fragments were ligated into the BamHI site of pMLB1034. Then *E. coli* competent cells were transformed with these ligation mixtures. Transformants were selected for blue colonies on ampicillin- and X-Gal–containing TY plates. Blue colonies containing the plasmids pZP32 and pZP44 were isolated. pZP32 and pZP44 had the expected structure, as verified by restriction enzyme analyses and sequence determination around the fusion points (results not shown).
S. CREMORIS Wg2-SPECIFIC PROMOTERS

2455

B. subtilis suggest that the RNA polymerases of both species recognize identical promoters. This was confirmed by the sequence data (Fig. 2), which are summarized in Fig. 4. The promoters which were localized 5 to 9 nucleotides upstream of the start site of transcription by means of S1 nuclease mapping experiments corresponded closely to the consensus -35 (TTGACA) and -10 (TATAAT) regions of E. coli promoters (8, 23) and B. subtilis vegetative e43 promoters (19). The spacings between the -10 and -35 sequences of the S. cremoris promoters were also similar to those of E. coli and B. subtilis. Recently we were able to clone and express B. subtilis promoters in S. lactis, suggesting that at least a certain class of B. subtilis and S. cremoris promoters are similar (unpublished results).

We observed that 30% of the S. cremoris promoters isolated in B. subtilis did not function in S. lactis. It is conceivable that these promoters are negatively controlled in S. cremoris. If this view is correct, one might expect that they are also repressed in S. lactis, because S. cremoris and S. lactis are closely related (between 70 and 100% base sequence homology [11]). Alternatively, since the level of resistance to chloramphenicol and the CAT activities observed in S. lactis were always less than in B. subtilis, it might be envisaged that from a given promoter S. lactis

FIG. 2. S. cremoris promoter nucleotide sequences determined by the dideoxynucleotide method of Sanger et al. (25). The overbars indicate the promoter -35 and -10 regions, and the dots above the sequences indicate the transcriptional start point determined by SI nuclease protection experiments. The SD sequences are underlined. The nucleotide sequences were screened for the presence of ORFs with the aid of the Microgenie computer program (Beckman Instruments, Inc.). Starts of the ORFs are given as amino acid sequences. The percent A + T content for a stretch of 50 nucleotides upstream of the -35 hexanucleotide sequence is indicated.

We measured the β-galactosidase activities of the gene fusions in E. coli containing pZP32, E. coli containing pZP44, and E. coli containing pMLB1034, in cultures having an optical density at 600 nm of approximately 0.4. E. coli containing pMLB1034 showed negligible activity, whereas the β-galactosidase activities in E. coli containing pZP32 and E. coli containing pZP44 were 10,000 and 1,200 U, respectively. These results indicate that the ribosome-binding sites deduced from the DNA sequence functioned in vivo.

DISCUSSION

The observations that the S. cremoris promoters isolated in S. lactis also functioned in B. subtilis and that promoters which were more active in S. lactis were also more active in S. lactis
ments, the start points of transcription were found to be the
cremoris or S. lactis carrying the promoter-containing frag-
tive of the origin of the RNA, namely, RNA obtained from S.
been reported for E. coli-specific promoters (8, 23). Irrespec-
tional start point on fragment P21 may be explained by the circumstance that the S1-protected fragment will migrate in the
buffer front of the sequence gel.

In all five promoter-containing fragments, A+T-rich regions were present upstream of the –35 promoter hexanucleotide. The percentage of A+T in the region 50 bases upstream of the S. cremoris-specific promoters ranged from 64 to 78% (Fig. 2). Whether these A+T-rich regions are important for promoter activity in vivo in S. cremoris remains to be established, especially since the overall A+T content in the lac gene from the lactic acid streptococci is already relatively high (the mean value of A+T for four different lactic streptococcal strains is 63% [111]).

An interesting question is whether the various promoter sequences can be related to the different levels of cat-86 gene expression. Although no definite conclusions can be drawn from the present data, it is interesting that the higher Cmr' and CAT activities (Table 1) were observed with promoters which either have complete consensus in their –35 hexanucleotide with the canonical E. coli sequences (P21 and P59) or differ from it in just one nucleotide (P23). Since the weaker promoters, P32 and P44, differ in two and three nucleotides, respectively, from the consensus –35 sequence, it seems as if complete consensus in the –35 hexanucleotides yields the stronger promoters, which would be in accord with the observation that in E. coli most in vitro candidate substitutions toward the consensus promoter sequence result in an increase of promoter activity (8).

Four of the five promoters listed in Fig. 4 contain a TG sequence upstream of and separated by one nucleotide from the –10 hexanucleotide. Two nucleotides at this position are weakly conserved in E. coli promoters (8), but are much stronger in B. subtilis promoters (19) and, as the present work shows, apparently also in S. cremoris promoters. Promoter P44 is missing the TG sequence at this site, yet this promoter is the most active in vivo in S. cremoris. This might additionally account for the low activity of this promoter.

The promoter fragments P21 and P59 did not contain an ORF. The promoter in fragment P21 is closest to the MboI site of the fragment, which may account for the absence of an ORF. In promoter-containing fragment P59, however, an ORF might be expected, because the length of the transcript from the start to the MboI site is 166 nucleotides. Possibly this promoter-containing fragment is part of an rRNA gene. In the three promoter-containing fragments P23, P32, and P44, the ORFs started with ATG coding for methionine. For the S1-protected fragment P21, transcription starts at the A of a TAC sequence.

The spacing between the –10 region and the start site of transcription ranged from 4 to 8 nucleotides, which has also been reported for E. coli-specific promoters (8, 23). Irrespective of the origin of the RNA, namely, RNA obtained from S. cremoris or S. lactis carrying the promoter-containing fragments, the start points of transcription were found to be the
same, indicating that transcription in S. cremoris and S. lactis is initiated at the same nucleotide.

The minor bands in the autoradiograph of the S1 nuclease mapping experiment (Fig. 3) may be due to RNase activity. Alternatively, these bands may represent secondary start points of transcription; the sequence data of P21, P23, and P59 indicated the presence of a second –10 region 5 nucleotides downstream of the first Pribnow box. Conceivably, this region may be used as a secondary site for the initiation of transcription. The absence of a secondary transcriptional start point in fragment P21 may be explained by the circumstance that the S1-protected fragment will migrate in the buffer front of the sequence gel.

Because in-frame fusions of the ORFs of P32 and P44 with the lacZ gene had β-galactosidase activity in E. coli and S. cremoris-specific expression signals functioned in vivo. We
did not succeed in constructing an in-frame fusion with the ORF of fragment P23. It is conceivable that this failure is due to the strong promoter activity of the fragment, which might render the host inviable because of overproduction of the β-galactosidase fusion product.

So far the construction of efficient expression vectors for lactic acid streptococci has not been reported. The identification and characterization of a number of strong S. cremoris promoters described in this paper may be useful for the construction of such vectors.

ACKNOWLEDGMENTS

This research was supported by grants GB1-2-054-NL and BAP-0012-NL from the Biotechnology Engineering Program and the Biotechnology Action Program of the Commission of the European Communities, respectively.

We thank Unilever Research Laboratories for synthesising the 17-mer oligonucleotides and for their support of and interest in this work. We are grateful to H. Mulder for preparing the figures.

LITERATURE CITED